16 research outputs found

    Inferential Survival Analysis for Type II Censored Truncated Exponential Topp Leone Exponential Distribution with Application to Engineering Data

    Get PDF
    This study focuses on estimating the unknown parameters of the truncated exponential Topp-Leon distribution using a type II scheme. We estimate the unknown parameters, survival, and hazard functions using maximum likelihood estimation methods. Additionally, we derive the approximate variance covariance matrix and asymptotic confidence intervals. Furthermore, we compute Bayesian estimates of the unknown parameters under squared error and linear loss functions. To generate samples from the posterior density functions, we use the Metropolies-Hastings algorithm. We demonstrate the effectiveness of the proposed distribution by applying it to two data sets: Monte Carlo simulation and real data set. Our results show that the proposed distribution provides accurate estimates of the unknown parameters and performs well in fitting the data. Our findings also indicate that Bayesian estimation can provide more precise estimates with narrower confidence intervals compared to maximum likelihood estimation method. In summary, the study provides a comprehensive analysis of the estimation of the unknown parameters for the truncated exponential Topp-Leone distribution using a type II scheme. Also, the results demonstrate the potential of this distribution in modeling real data and the usefulness of both maximum likelihood and Bayesian estimation methods in obtaining accurate parameter estimates

    Analysis of Generalized Inverted Exponential Distribution under Adaptive Type-I Progressive Hybrid Censored Competing Risks Data

    Get PDF
    The estimation of the unknown parameters of generalized inverted exponential distribution under adaptive type-I progressive hybrid censored scheme (AT-I PHCS) with competing risks data will be discussed. The reason why AT-I PHCS has exceeded other failure censored types; Time censored types enable analysts to accomplish their trials and experiments in a shorter time and with higher efficiency. In this regards, we obtain the maximum likelihood estimation of the parameters and the asymptotic confidence intervals for the unknown parameters. Further, Bayes estimates of the parameters which obtained based on squared error and LINEX loss functions under the assumptions of independent gamma priors of the scale parameters. For Bayesian estimation, we take advantage of Markov Chain Monte Carlo techniques to derive Bayesian estimators and the credible intervals. Finally, two data sets with Monte Carlo simulation study and a real data set are analyzed for illustrative purposes

    Parameters and Reliability Estimation of Left Truncated Gumbel Distribution under Progressive Type II Censored with Repairable Mechanical Equipment Data

    Get PDF
    The estimation of two parameters of the left truncated Gumbel distribution using the progressive type II censoring scheme is discussed. We first derived the maximum likelihood estimators of the unknown parameters. The approximate asymptotic variance-covariance matrix and approximate confidence intervals based on the asymptotic normality of the classical estimators are calculated. Also, the survival and hazard functions are derived. Further, the delta method is used to construct approximate confidence intervals for survival and hazard functions. Using the left truncated normal prior for the location parameter and an inverted gamma prior for the scale parameter, several Bayes estimates based on squared error and general entropy loss functions are computed. Bayes estimators of the unknown parameters cannot be calculated in closed forms. Markov chain Monte Carlo method, namely Metropolis-Hastings algorithm, has been used to derive the approximate Bayes estimates. Also, the credible intervals are constructed by using Markov chain Monte Carlo samples. Finally, The Monte Carlo simulation study compares the performances among various estimates in terms of their root mean squared errors, mean absolute biased, average confidence lengths, and coverage probabilities under different sets of values of sample sizes, number of failures and censoring schemes. Moreover, a numerical example with a real data set and Markov chain Monte Carlo data sets are tackled to highlight the importance of the proposed methods. Bayes Markov chain Monte Carlo estimates have performed better than those obtained based on the likelihood function

    Analysis of Two Generalized Exponential Populations Under Joint Type-I Progressive Hybrid Censoring Scheme

    Get PDF
    This paper discussed inference for two generalized exponential using the joint type-I progressively hybrid censoring (JPHC-I) scheme. It assumed that the lifetime distribution of the items from the two populations follow generalized exponential distribution. Based on the JPHC-I scheme, we first consider the maximum likelihood estimators of the unknown parameters along with thier asymptotic confidence intervals. Next, we provide the Bayesian inferences of the unknown parameters under the assumptions of independent gamma priors on the scale parameters using squared error (SE) and linear-exponential (LINEX) loss functions. Markov Chain Monte Carlo (MCMC) techniques is applied to carry out the Bayesian estimation procedure and in turn calculate the credible intervals. To evaluate the performance of the estimators, numerical example is carried out

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study

    Get PDF
    Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world. Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231. Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001). Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication

    Mortality of emergency abdominal surgery in high-, middle- and low-income countries

    Get PDF
    Background: Surgical mortality data are collected routinely in high-income countries, yet virtually no low- or middle-income countries have outcome surveillance in place. The aim was prospectively to collect worldwide mortality data following emergency abdominal surgery, comparing findings across countries with a low, middle or high Human Development Index (HDI). Methods: This was a prospective, multicentre, cohort study. Self-selected hospitals performing emergency surgery submitted prespecified data for consecutive patients from at least one 2-week interval during July to December 2014. Postoperative mortality was analysed by hierarchical multivariable logistic regression. Results: Data were obtained for 10 745 patients from 357 centres in 58 countries; 6538 were from high-, 2889 from middle- and 1318 from low-HDI settings. The overall mortality rate was 1⋅6 per cent at 24 h (high 1⋅1 per cent, middle 1⋅9 per cent, low 3⋅4 per cent; P < 0⋅001), increasing to 5⋅4 per cent by 30 days (high 4⋅5 per cent, middle 6⋅0 per cent, low 8⋅6 per cent; P < 0⋅001). Of the 578 patients who died, 404 (69⋅9 per cent) did so between 24 h and 30 days following surgery (high 74⋅2 per cent, middle 68⋅8 per cent, low 60⋅5 per cent). After adjustment, 30-day mortality remained higher in middle-income (odds ratio (OR) 2⋅78, 95 per cent c.i. 1⋅84 to 4⋅20) and low-income (OR 2⋅97, 1⋅84 to 4⋅81) countries. Surgical safety checklist use was less frequent in low- and middle-income countries, but when used was associated with reduced mortality at 30 days. Conclusion: Mortality is three times higher in low- compared with high-HDI countries even when adjusted for prognostic factors. Patient safety factors may have an important role. Registration number: NCT02179112 (http://www.clinicaltrials.gov)

    Statistical Evaluations and Applications for IER Parameters from Generalized Progressively Type-II Hybrid Censored Data

    No full text
    Generalized progressively Type-II hybrid strategy has been suggested to save both the duration and cost of a life test when the experimenter aims to score a fixed number of failed units. In this paper, using this mechanism, the maximum likelihood and Bayes inferential problems for unknown model parameters, in addition to both reliability, and hazard functions of the inverted exponentiated Rayleigh model, are acquired. Applying the observed Fisher data and delta method, the normality characteristic of the classical estimates is taken into account to derive confidence intervals for unknown parameters and several indice functions. In Bayes’ viewpoint, through independent gamma priors against both symmetrical and asymmetrical loss functions, the Bayes estimators of the unknown quantities are developed. Because the Bayes estimators are acquired in complicated forms, a hybrid Monte-Carlo Markov-chain technique is offered to carry out the Bayes estimates as well as to create the related highest posterior density interval estimates. The precise behavior of the suggested estimation approaches is assessed using wide Monte Carlo simulation experiments. Two actual applications based on actual data sets from the mechanical and chemical domains are examined to show how the offered methodologies may be used in real current events

    Statistical Analysis of Type-II Generalized Progressively Hybrid Alpha-PIE Censored Data and Applications in Electronic Tubes and Vinyl Chloride

    No full text
    A new Type-II generalized progressively hybrid censoring strategy, in which the experiment is ensured to stop at a specified time, is explored when the lifetime model of the test subjects follows a two-parameter alpha-power inverted exponential (Alpha-PIE) distribution. Alpha-PIE’s parameters and reliability indices, such as reliability and hazard rate functions, are estimated via maximum likelihood and Bayes estimation methodologies in the presence of the proposed censored data. The estimated confidence intervals of the unknown quantities are created using the normal approximation of the acquired classical estimators. The Bayesian estimators are also produced using independent gamma density priors under symmetrical (squared-error) loss. The Bayes’ estimators and their associated highest posterior density intervals cannot be calculated theoretically since the joint likelihood function is derived in a complicated form, but they can potentially be assessed using Monte Carlo Markov-chain algorithms. We next go through four optimality criteria for identifying the best progressive design. The effectiveness of the suggested estimation procedures is assessed using Monte Carlo comparisons, and certain recommendations are offered. Ultimately, two different applications, one focused on the failure times of electronic tubes and the other on vinyl chloride, are analyzed to illustrate the effectiveness of the proposed techniques that may be employed in real-world scenarios

    Reliability Inferences of the Inverted NH Parameters via Generalized Type-II Progressive Hybrid Censoring with Applications

    No full text
    Generalized progressive hybrid censored mechanisms have been proposed to reduce the test duration and to save the cost spent on testing. This paper considers the problem of estimating the unknown model parameters and the reliability time functions of the new inverted Nadarajah–Haghighi (NH) distribution under generalized Type-II progressive hybrid censoring using the maximum likelihood and Bayesian estimation approaches. Utilizing the normal approximation of the frequentist estimators, the corresponding approximate confidence intervals of unknown quantities are also constructed. Using independent gamma conjugate priors under the symmetrical squared error loss, the Bayesian estimators are developed. Since the joint likelihood function is obtained in complex form, the Bayesian estimators and their associated highest posterior density intervals cannot be obtained analytically but can be evaluated via Monte Carlo Markov chain techniques. To select the optimum censoring scheme among different censoring plans, five optimality criteria are used. Finally, to explain how the proposed methodologies can be applied in real situations, two applications representing the failure times of electronic devices and deaths from the coronavirus disease 2019 epidemic in the United States of America are analyzed
    corecore